
N87129135

Supercomputlng on Massively Parallel Bit-Serial Architectures

Consider the idea that supercomputing is a synergy of generic

algorithms, languages and architectures and that real breakthroughs in

parallel computing will be achieved by considering all three together in a

simulated software environment. Engineering tradeoffs could be made between

performance, machine transparency, standardization and program portability

before any new machines are actually built. Standardized languages could be

developed for generic subclasses of parallel machines; languages that really

give high peformance and encourage free parallel expression and "thinking in

parallel".

My own research on the Goodyear MPP (Massively Parallel Processor),

suggests that hlgh-level parallel languages are practical and can be

designed with powerful new semantics that allow algorithms to be efficiently

mapped to the real machines. For the MPP these semantics include parallel/

associative array selection for both dense and sparse matrices, variable

precision arithmetic to trade accuracy for speed, micro-pipelined "train"

broadcast, and conditional branching at the PE control unit level.

The preliminary design of a FORTRAN-like parallel language for the MTP

has been completed and is being used to write programs to perform sparse

matrix array selection, mln/max search, matrix multiplication, Gaussian

elimination on single bit arrays and other generic algorithms. The MPP

timing estimate for Gausslan elimination of a 4K by 4K single bit matrix is

under one second -- the equivalent of approximately 64 billion scalar

operations. Parallel Gauss-Jordan matrix inversion is also being investi-

gated. The estimated time to invert a 128 X 128, 32 bit real matrix using

full pivoting on the MPP is 50 msec. This is roughly equivalent to a I00

MFLOP scalar rate.

The MPP is a SIMD machine of 16384 single bit processors arranged in a

128 X 128 array. Individual PE's are interconnected with their four nearest

neighbors. Each PE can address 1024 bits of its own local memory. A 32 bit

shift register in each PE allows for micro-pipelining of long words and

faster partial sum accumulation for multiplication. The machine can execute

160 billion mlcro-instructions per second which translates to 800 GOPS for

some instructions. Operations include single bit logical, shift, and add as

well as column I/0 and one or two dimensional routing in a spiral,

cyclinder, or torus. All operations can be directly or indirectly masked.

The logical "or" of one bit per PE (SUMOR) can be used to pass array
information back to the PE control unit for broadcast to other PE's, scalar

I/0 or conditional branching. If a second MPP were ever built, it might

look considerably different than the current MPP. For example, it would

certainly have greater memory depth -- at least 64K bits per PE. It might

also have a reconfigurable bit/byte serial ALU, staged PE's for table lookup

arithmetic, and pipellned SUMOR logic.

PR_-_DING PAGE BLANK NOT FILMED

Ken lobst

4115/85

GE II_t EI_TIONALL Y BLANII
1-145

SUPERCOMPUTING ON MASSIVELY PARALLEL

BIT-SERIAL ARCHITECTURES

e SUPERCOMPUTING DOMAIN

| NEW DIMENSIONS IN PARALLEL COMPUTING

| SOME GENERIC ALGORITHMS

| THE GOODYEAR MPP

SOME MPP SPECIFIC ALGORITHMS CODED IN A FORTRAN-LIKE

BIT-SERIAL PROGRAMMING LANGUAGE

| WHAT MIGHT A SECOND GENERATION MPP LOOK LIKE?

1-146

SUPERCOMPUTING DOMAIN

PARALLEL
PROGRAMS

ALGORIII_

LANGUAGES

CREATIVE

THOUGHT _s

ARCHITECTURES

STANDARDIZATION

PARALLEL.G
FORNEWCOMPILERS

I
HARDWARECAPABILITIES

DESIGNSPEC'S
FORNEWMACHINES

SIMULATED SOFTWARE ENVIRONMENT

1-147

NEW DIMENSIONS IN PARALLEL COMPUTING

BIT-SERIAL

DIVISIONBY 2"± I

MIN/MAXSEARCH

MATRIXMULTIPLICATION

COLUMNBROADCAST

[GAUSSIANELIMINATION

{
1

I PARALLEL

I
I /

/

/

LINEARRECURRENCE

1-148

PERFORMANCEWITH INTEGEROPERANDS

10,000

5851,

--_ 1862

;0 128 x 128 ARRAY
10 MHz CLOCK RATE

;340
ADD ARRAY TO ARRAY

2240 SUBTRACTARRAY FROM

1680 ARRAY

1350
,120

850

MULTIPLYARRAY

BY ARRAY
146 _

82

58

34

8 16 24 32 4O 48

OPERAND WORDLENGTHS. BITS

56 64

1-150

DIVISION BY 2"_"_I EXAMPLE

FROM THE BINOMIAL THEOREM,

I Xz.-
I--.7c

BY A CHANGE OF VARIABLE _=_x THEN

NOW LET _--Z"_ AND DIVISION BY 2 _1
REDUCES TO A SHORT SEQUENCE OF BINARY

SHIFTS AND ADDS (AND/OR SUBTRACTS),

"Lr -if-

2"± I -Z_ D z,., -I-

FOR EXAMPLE, LET V = 237658 AND N = 10

THEN

"I/'- 7_ 37&_-_

-- : ZZ_. _15-
2 - / j oz_

AFTER 3 SHIFTS AND 2 ADDS

1-151

THE GOODYEAR MPP

0 SIMDMACHINEOF 16384SINGLEBIT PROCESSORSAR_NGED IN A

128 X 128 ARRAY

I NEARESTNEIGHBORINTERCONNECTIVITY

! 1024BITSOF MEBORYPER PE

I 32 BIT SHIP-[REGISTERALLOWSFOR MICRO-PIPELININGAND

FASTERMULTIPLICATION

I EXECUTIONSPEEDOF 160 BILLIONMICRO-INSTRUCTIONSPER SECOND

WHICHTRANSLATESTO 800 GOPS FOR SOME INSTRUCTIONS

OPERATIONSINCLUDESINGLEBIT LOGICAL,SHIFT,AND ADD AS

WELLAS COLUMNI/OAND ONE OR TWO DIMENSIONALROUTINGIN

A SPIRAL,CYLINDER,OR TORUS

l ALL OPERATIONSCAN BE DIRECTLYOR INDIRECTLYMASKED

l THE LOGICAL"OR"OF ONE BIT PER PE (SUMOR)CAN BE LLSEDTO

PASSARRAYINFORMATIONBACKTO THE PE CONTROLUNIT FOR

BROADCAST,SCALARI/O,OR CONDITIONALBRANCHING

1-152

A

Z

LJLJ
,--J
W

Z
N

L_J

,-..4

U-

Z

O.

A

T
3

t_

t._

1-153

PARALLEL/ASSOCIATIVE ARRAY SELECTION

MPP

CONTROL UNIT
REAL S(8:24),A[64,256](8:24)

S=SUMOR(A[64,256])

1-154

MAXIMUM OF 32 BIT INTEGER ARRAY

(OF UNIQUE VALUES)

BIT MAX[]

INTEGERA[128,128](0:32)

MAX=I

DO 1 I=1,32

IF (SUMOR(A[MAX](1)))MAX=A[MAX](1)

! CONTINUE

; DECLARE MAX AS BIT MASK
OVER ALL PE's

; DECLAREA AS A 128 X 128
UNSIGNED INTEGER ARRAY

; INITIALIZE MAX TO 1 OVER
ALL PE's
SCAN BITS IN A FROM MOST

TO LEAST SIGNIFICANT BITS

REPLACE MAX WITH A NEW

SUBSET OF MAXIMUM VALUES

FOR EACH NON ZERO BIT
PLANE OF A

MAXIMUM OF 32 BIT INTEGER ARRAY

(GENERAL CASE)

BIT MAX[],T[](46),INDEX[](14)

INTEGERA[128,128](0:32)

C0_ON /INIT/INDEX

MAX=I

T=A.CON.INDEX

DO 1 I=1,46

IF (SUMOR(T[MAX](1)))MAX=T[MAX](1)

I CONTINUE

SAME ALGORITHM AS BEFORE
EXCEPT A ARRAY IS FIRST

CONCATENATED WITH THE

PE ADDRESS FIELD TO INSURE

UNIQUENESS OF RESULT

1-155

MATRIX MULTIPLICATION EXAMPLE

IZp

|

• |

f

J f

2

REAL

&

A[8,16,128](8:32),B[8,16,128](8:32),

C[8,16,128](8:32),T[8,16,128](8:32)

READ A[,,1],B[1,,]

T=A[,,I...]*B[I...,,]

C=T[,+,]

PRINT C[,I,]

1-156

COLUMN BROADCAST EXAMPLE

T
128X 128

REAL A[128,1281(8:32)

A-A[,J...]

OR

REAL A[128,128](8.32)

BIT M[]

M=[128,128;,J]

A=A[•NOT.M][,128-_1

1-157

COLUMN BROADCAST EXAMPLE

PROBLEM: TO BROADCAST A COLUMN OF FLOATING POINT NUMBERS

ACROSS THE MPP ARRAY

SOLUTION #I: WITH PE'S INTERCONNECTED IN AN E/W CYLINDER;

LOAD, SHIFT AND STORE THE 32 BIT VALUES

ACROSS THE ARRAY. THIS TAKES APPROXIMATELY

3 X 32 X 128 = 12288 CYCLES.

SOLUTION #2: WITH PE'S INTERCONNECTED IN AN E/W CYLINDER;

nTRAIN" BROADCAST THE 32 BIT VALUES ACROSS

THE ARRAY. THIS CAN BE VIEWED AS A MICRO-

PIPELINING OPERATION AND TAKES ONLY 207 CYCLES.

THE ALGORITHM IS AS FOLLOWS:

| GET nTRAIN" OF i STOP BIT + 32 BIT VALUES

OUT ONTO THE E/W PE CHANNEL (_ 33 CYCLES)

I CIRCULATE "TRAIN_ ONCE AROUND (_ 128 CYCLES).

DURING THIS PROCESS INDIVIDUAL PE'S WILL

STORE THE _TRAINn IN THEIR SHIFT REGISTERS.

SHIFTING STOPS WHEN THE STOP BIT ENTERS THE

CONDITIONAL MASK REGISTER OF EACH PE.

! STORE ALL SHIFT REGISTERS (: 32 CYCLES).

1-158

GAUSSIAN ELIMINATION EXAMPLE

SINGLEBIT MATRIX

;_o,,IzIl_'

I I I

if'
I

I i t

,-. '_4000. Z 4000

"-. l OF I000

IT PLANES -__...

,oi,, I,=i,_1%i_,i%I"_.,1
- ,..._..

LPOLP

MPP ARRAY

1-159

128 X 128

GAUSSIAN ELIMINATION EXAMPLE

BIT A[4000,4](1000),M[4000,4],USED(4000)

INTEGERPIVOT(4000,O:14),J1(O:2),J2(O:12),J(0:14)

EQUIVALENCE(Ji,J(1)),(J2,J(3))

READA

DO 1 I=1,4000

USED(I)=0

1 CONTINUE

DO 7 I=1,4000

DO 2 J2=1,1000

IF (SUMOR(A[I,](J2)))GO TO 3

2 CONTINUE

GO TO 8

3 CONTINUE

DO 4 JI=1,4

IF (SUMOR(A{I,J1](J2)))GO TO 5

4 CONTINUE

5 CONTINUE

PIVOT(1)=J

USED(J)=1

; READ IN ARRAY

J INITIALIZE HISTORY MATRIX

; SEARCH FOR A 1 IN ROW I

IN STEPS OF 4 COLUMNS

Row OF ALL O's " EXIT

FIND WHICH COLUMN OF 4

; SAVE HISTORY INFORMATION

M=A[](J2).AND..NOT.[4000,4;I,J1]; SAVE PIVOTCOLUMNIN NEW

DO 6 J2=1,1000

A[](J2)=A[](J2).XOR.M[,JI...]

MATRIX M, ZEROING THE PIVOT

ROW VALUE

; ELIMINATE 4 COLUMNS AT A TIME

BY BROADCASTING THE PIVOT

COLUMN ACROSS THE M ARRAY

6 CONTINUE

7 CONTINUE

8 CONTINUE

1-160

GAUSS-JORDAN MATRIX INVERSION

WITH FULL PIVOTING

1-161

PARALLELDATA STRUCTURES

REAL ARRAYS

U = [A : I] AUGMENTED MATRIX

V = [:] WORKING ARRAY

W = L :] WORKING ARRAY

BIT MASKS

PIVOTED ROW/COLUMNS

Y = [i": i"] PIVOT ROW

WHERE I IS THE IDENTITY MATRIX

i"IS THE UNITY MATRIX

IS THE ZERO MATRIX

1-162

OTHER DATA STRUCTURES

SCALARS

DET - 1 PIVOT

1-163

PARALLELAPPROACHTO MATRIX INVERSION

REPEAT FOLLOWING STEPS N TIMES

| FIND NEXT PIVOT

I UPDATE DETERMINATE (OPTIONAL)

I ZERO PIVOT ROW AND COLUMN IN X

| ZERO PIVOT ROW IN Y

| NORMALIZE PIVOT ROW IN U

| BROADCAST PIVOT ROW N TIMES INTO V

t BROADCAST PIVOT COLUMN 2N TIMES INTO W

I PERFORM PARALLEL ROW OPERATIONS FOR A

SINGLE PIVOT

! RESET PIVOT ROW IN Y

THEN REORDER ROWS IN U TO FORM

U=[I :A -1 j

1-164

PARALLEL MATRIX INVERSION ALEORITHM

FOR I - 1 TO N

PIVOT " MAxlul PER X
DET = DET " PIVOT

X =0

Y -0
I

[=] ["],U , - U , PIVOT
' I

V =U

 [11 I] [1' 1000 " U 'i

|

U = U - V " W PER Y

,[,']IllI = 1
o

i

END I

FOR J - 1 TO N

FOR I = 1 TO N

IF U[I,J] = 1 THEN V[J,°] = U[I,']

END I

END J

U=V

1-165

MPP II:

WHAT MIGHT IT LOOK LIKE?

O MUCH GREATER MEMORY DEPTH: AT LEAST 64K BITS

PER PE, WITH AT LEAST ONE LEVEL OF INDIRECT

ADDRESSING.

; RECONFIGURABLE BIT/NIBBLE/BYTE SERIAL ALU

; STAGED PE'S FOR TABLE LOOKUP ARITHMETIC.

HOW MANY TABLES? WHAT SIZE? RAM OR ROM?

O PIPELINED SUMOR LOGIC

1-166

